skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Macknick, Jordan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Research on multi-use solar—combining solar energy with agriculture (agrivoltaics) or natural vegetation (ecovoltaics)—is developing rapidly, but interdisciplinary integration is needed to better address management issues and to guide future research. Agrivoltaics allows farmers to develop and manage microclimates, which can help to retain or expand agricultural production in the context of changing climate and land-water limitations. However, improvements in food–energy production and other co-benefits are often site-specific, depending on background climate, soil conditions and system design. To optimize multi-use systems, it is essential to consider local economic impacts, ecosystem services and stakeholder perspectives in design and implementation. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026
  2. Concerns over the land use changes impacts of solar photovoltaic (PV) development are increasing as PV energy development expands. Co-locating utility-scale solar energy with vegetation may maintain or rehabilitate the land's ability to provide ecosystem services. Previous studies have shown that vegetation under and around the panels may improve the performance of the co-located PV and that PV may create a favorable environment for the growth of vegetation. While there have been some pilot-scale experiments, the existence and magnitude of these benefits of vegetation has not been confirmed in a utility-scale PV facility over multiple years. In this study we use power output data coupled with microclimatic measurements in temperate climates to assess these potential benefits. This study combines multi-year microclimatic measurements to analyze the physical interactions between PV arrays and the underlying soil-vegetation system in three utility-scale PV facilities in Minnesota, USA. No significant cooling of PV panels or increased power production was observed in PV arrays with underlying vegetation. Fine soil particle fraction was the highest in soils within PV arrays with the vegetation which was attributable to the lowest wind speeds from the compounding suppression of wind by vegetation and PV arrays. Soil moisture and soil nutrient response to re-vegetation varied between PV facilities, which could be attributed to differing soil texture. No statistically significant vegetation-driven panel cooling was observed in this climate. This finding prompts a need for site-specific studies to identify contributing factors for environmental co-benefits in co-located systems. 
    more » « less
  3. Abstract Co‐locating solar photovoltaics with vegetation could provide a sustainable solution to meeting growing food and energy demands. However, studies quantifying multiple co‐benefits resulting from maintaining vegetation at utility‐scale solar power plants are limited. We monitored the microclimate, soil moisture, panel temperature, electricity generation and soil properties at a utility‐scale solar facility in a continental climate with different site management practices. The compounding effect of photovoltaic arrays and vegetation may homogenize soil moisture distribution and provide greater soil temperature buffer against extreme temperatures. The vegetated solar areas had significantly higher soil moisture, carbon, and other nutrients compared to bare solar areas. Agrivoltaics in agricultural areas with carbon debt can be an effective climate mitigation strategy along with revitalizing agricultural soils, generating income streams from fallow land, and providing pollinator habitats. However, the benefits of vegetation cooling effects on electricity generation are rather site‐specific and depend on the background climate and soil properties. Overall, our findings provide foundational data for site preservation along with targeting site‐specific co‐benefits, and for developing climate resilient and resource conserving agrivoltaic systems. 
    more » « less